NAG C Library Function Document

nag ref vec multi normal (g05eac)

1 Purpose

nag_ref_vec_multi_normal (g05eac) sets up a reference vector for a multivariate Normal distribution with mean vector a and variance-covariance matrix C, so that nag_ref_vec_multi_normal (g05eac) may be used to generate pseudo-random vectors.

2 Specification

3 Description

When the variance-covariance matrix is non-singular (i.e., strictly positive-definite), the distribution has probability density function

$$f(x) = \sqrt{\frac{|C^{-1}|}{(2\pi)^n}} \exp\{-(x-a)^T C^{-1}(x-a)\}\$$

where n is the number of dimensions, C is the variance-covariance matrix, a is the vector of means and x is the vector of positions.

Variance-covariance matrices are symmetric and positive semi-definite. Given such a matrix C, there exists a lower triangular matrix L such that $LL^T = C$. L is not unique, if C is singular.

nag_ref_vec_multi_normal decomposes C to find such an L. It then stores n, a and L in the reference vector r for later use by nag_return_multi_normal (g05ezc). nag_return_multi_normal (g05ezc) generates a vector x of independent standard Normal pseudo-random numbers. It then returns the vector a + Lx, which has the required multivariate Normal distribution.

It should be noted that this routine will work with a singular variance-covariance matrix C, provided C is positive semi-definite, despite the fact that the above formula for the probability density function is not valid in that case. Wilkinson (1965) should be consulted if further information is required.

4 Parameters

1: $\mathbf{a}[\mathbf{n}]$ - double Input

On entry: the vector of means, a, of the distribution.

2: \mathbf{n} - Integer Input

On entry: the number of dimensions, n, of the distribution.

Constraint: $\mathbf{n} > 0$.

3: c[n][tdc] - double Input

On entry: the variance-covariance matrix of the distribution. Only the upper triangle need be set.

4: **tdc** – Integer Input

On entry: the second dimension of the array \mathbf{c} as declared in the function from which nag_ref_vec_multi_normal is called.

[NP3491/6] g05eac.1

Constraint: $tdc \ge n$.

5: **eps** – double *Input*

On entry: the maximum error in any element of C, relative to the largest element of C.

Constraint: $0.0 \le eps \le 0.1/n$.

6: \mathbf{r} – double **

On exit: reference vector for which memory will be allocated internally. This reference vector will subsequently be used by nag_return_multi_normal (g05ezc). If no memory is allocated to $\bf r$ (e.g., when an input error is detected) then $\bf r$ will be NULL on return, otherwise the user should use the NAG macro NAG_FREE to free the storage allocated by $\bf r$ when it is no longer of use.

7: fail – NagError * Input/Output

The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE_INT_ARG_LT

On entry, **n** must not be less than 1: $\mathbf{n} = \langle value \rangle$.

NE 2 INT ARG LT

On entry, $\mathbf{tdc} = \langle value \rangle$ while $\mathbf{n} = \langle value \rangle$. These parameters must satisfy $\mathbf{tdc} \geq \mathbf{n}$.

NE_REAL_ARG_LT

On entry, **eps** must not be less than 0.0: **eps** = $\langle value \rangle$.

NE 2 REAL ARG GT

On entry, eps = $\langle value \rangle$ while $0.1/\mathbf{n} = \langle value \rangle$. These parameters must satisfy eps $\leq 0.1/\mathbf{n}$.

NE_ALLOC_FAIL

Memory allocation failed.

NE NOT POS SEM DEF

Matrix C is not positive semi-definite.

6 Further Comments

The time taken by the routine is of order n^3 .

It is recommended that the diagonal elements of C should not differ too widely in order of magnitude. This may be achieved by scaling the variables if necessary. The actual matrix decomposed is $C+E=LL^T$, where E is a diagonal matrix with small positive diagonal elements. This ensures that, even when C is singular, or nearly singular, the Cholesky Factor L corresponds to a positive-definite variance-covariance matrix that agrees with C within a tolerance determined by eps .

6.1 Accuracy

The maximum absolute error in LL^T , and hence in the variance-covariance matrix of the resulting vectors, is less than $(n \times \max(\mathbf{eps}, \varepsilon) + (n+3)\varepsilon/2)$ times the maximum element of C, where ε is the **machine precision**. Under normal circumstances, the above will be small compared to sampling error.

g05eac.2 [NP3491/6]

6.2 References

Knuth D E (1981) *The Art of Computer Programming (Volume 2)* Addison-Wesley (2nd Edition) Wilkinson J H (1965) *The Algebraic Eigenvalue Problem* Oxford University Press, London

7 See Also

```
nag_random_init_repeatable (g05cbc)
nag_random_init_nonrepeatable (g05ccc)
nag_random_normal (g05ddc)
nag_return_multi_normal (g05ezc)
```

8 Example

The example program prints five pseudo-random observations from a bivariate Normal distribution with means vector

$$\begin{bmatrix} 1.0 \\ 2.0 \end{bmatrix}$$

and variance-covariance matrix

$$\begin{bmatrix} 2.0 & 1.0 \\ 1.0 & 3.0 \end{bmatrix},$$

generated by nag_ref_vec_multi_normal and nag_return_multi_normal (g05ezc) after initialisation by nag_random init_repeatable (g05cbc).

8.1 Program Text

```
/* nag_ref_vec_multi_normal(g05eac) Example Program
 * Copyright 1991 Numerical Algorithms Group.
 * Mark 2, 1991.
 * Mark 3 revised, 1994.
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg05.h>
#define N 2
#define TDC N
main()
  Integer i, j;
  double a[N], c[N][TDC], z[N];
  double *r = (double *)0;
  double eps = 0.01;
  Vprintf("g05eac Example Program Results\n");
  a[0] = 1.0;
  a[1] = 2.0;
  c[0][0] = 2.0;
  c[1][1] = 3.0;
```

[NP3491/6] g05eac.3

8.2 Program Data

None.

8.3 Program Results

g05eac.4 (last) [NP3491/6]